[CONTRIBUTION FROM INSTITUTE OF POLYTECHNICS, OSAKA CITY UNIVERSITY]

Absorption Spectra and Chemical Structure. III. Effects of Substituents and Structure

By Kenzô Hirayama

Received July 16, 1953

In previous studies a quantitative correlation of λ_{max} with molecular structure for the long wave length absorption band of certain polyenes was made. In this paper the effect of furanoid oxide substituents and of certain spectroscopically effective rings are discussed.

In the preceding paper¹ it was stated that the

Table I

 λ_{max} for the first absorption band of polyenes and its derivatives can be calculated by $(\lambda_{\text{max}}^{\text{solv}})^2 = -2.12 + B^{\text{solv}} (1 - 0.920^{\text{N}}) \times 10^4 \text{ m}\mu^2$ (1)

where B^{solv} is characteristic of the solvent (see

Rati	OS OF EFFECTS OF SUBSTITUENTS AN	d Str	UCTURES			
	to that of Ethylene Chromoph	IORE				
No.	Substituents and structures	$Ratio^{a}$				
1		R	+0.13			
2	Alkyl substituent ^b	R'	+ .17			
3		I	+ .09			
1		A	+ .15			
9 5	a-riyoroxyaikyi substituent	A'	+ .11			
6	A and any all all and a line and a substitution to	AcO	+ .00			
0	Acyloxy and alkoxyl substituent	RO				
7	α , β -Epoxyalkyl substituent	Ep	+ .18			
8	Furanoid oxide substituent	FO	+ .02			
9	Exocyclic ethylene linkage	ex	+ .07			
10	Endocyclic ethylene linkage	en	+ .04			

111,2-Dihydrobenzene structuredb+83121,2,5,6-Tetrahydronaphthalene struct.tn+1.12

 \sim /

13		r1	-0.81
14		r2	-0.57
15		r3	-1.04
16		r4	-0.20
17		r5	90
18	0 ^{//} V V CO-CH,	r6	39

^a Values rounded off to one decimal place are employed for calculation with the exception of steroids and compounds for which $2 \leq N < 3$. ^b Alkyl substituents include α acyloxyalkyl, α -alkoxyalkyl and alkyl groups with chromophore in the α -position; for the effect of the alkyl substituent on N, see Table IV, part I. ^cA = substituents in α - or ω -position; A' = substituents in position other than α or ω . Table II, part II), and N is the homoconjugation index, which is defined by the number of conjugated homochromophoric groups and by the number and type of substituents and of spectroscopically effective structures.

The spectroscopic effect (*i.e.*, the contribution to N) of various substituents, linkages and rings is summarized in Table I.

It has been known that r2 (Table I) has a hypsochromic effect.² N_{r2} was computed from the difference between the observed λ_{max} for compounds 12 and 13 (Table II) and the values calculated without consideration of the hypsochromic effect of r2; $N_{r2} = -0.57(-0.6)$.

According to Fieser,¹ the hypsochromic effect of r1 and r2 is due to steric hindrance which prevents the ethylene linkage in these rings from becoming sufficiently coplanar with the open-chain polyene; this explanation is also applicable to r3, r4 and r5. The similar unsaturated ring in compound 20, Table II, will not exert a hypsochromic effect, since the ethylene linkage in the ring is not conjugated with those in the open chain; in fact, isoanhydrovitamin A (Table II, 20) shows the simple bathochromic effect ($N_{ex} = +0.1$) of the exocyclic linkage.

The values for r3 and r4 were determined by the method discussed for r2; $N_{r3} = -1.0$ and $N_{r4} = -0.2$.

In view of the many experimental data for compounds containing r2 or r4, and the good agreement between the calculated and observed λ_{max} (except for 11 in alcohol and 15 in cyclohexane (Table II), the above values for N_{r2} and N_{r4} seem to be quite reasonable. The validity of N_{r3} can-

TABLE II

				S WILLIGI DI DU							
No. Compound		n	R	Other effects	Ν	No.	Compound	n	R	Other effects	
1	Aurochrome	7	4	FO:2	7.4	12	Dehydro-β-carotene (isocarotene)	12	10	r2:2	11.8
2	Cryptochrome	7	4	FO:2	7.4	13	Eschscholzxanthin	12	10	r2:2	11.8
3	Auroxanthin	7	4	1.0:2	7.4	14	Vitamin A2	6	5	A:1 r3:1	5, 6
4	Flavochrome	8	5	FO:1	8.5	15	Anh ydroeschscholzxanthin	14	10	r4:2	14.6
5	Flavoxanthin	8	5	FO:1	8.5	16	Aphanin	11	10	rl:1r5:1 (a)	10.3
6	Chrysanthemaxanthin	8	5	FO:1	8.5					(b)	10.9
7	Luteochrome	8	4	Ep:1 FO:1	8.6	17	Aphanin oxime	11	10	r1:1 r5:1 (a)	10.3
8	Mutatochrome (citroxanthin)	9	7	FO:1 r1:1	8.9		-			(b)	10.9
9	Cryptoflavin	9	7	FO:1 r1:1	8.9	18	Dihydrorhodoxanthin	11	10	r5:2	10.2
10	Mutatoxanthin	9	7	FO:1 r1:1	8.9	19	Dihydrorhodoxanthin dioxime	11	10	r5:2	10.2
E	Anhydrovitamin A,	Ę.	5	r2 · 1	5.9	20	Isoanhydrovitamin A	ō	4	e x:1	5.5
	•					21	Dihydro-bis-anhydro-β-carot enone	10	8	r 6:2	10.0

Absorption Maxima of Polyenes with Special Substituent or Structure $(m\mu)^a$ in Various Solvents

(1) K. Hirayama, THIS JOURNAL, 77, 379 (1955).

(2) L. F. Fieser, J. Org. Chem., 15, 930 (1950).

							TAB	LE II	(Contin	ued)								
Cpd.	Caled.	Obsd.	Cpd.	Caled.	Obsd.	Cpđ.	Calcd.	Obsd.	Cpd.	Caled.	Obsd.	Cpd.	Caled.	Obsd.	Cpđ.	Calcd.	Obsd.	
Carbon disulfide		С	Cyclohexane			Hexane		Pyridine			Ether			Methanol				
1	427	428	13	478	475^d	5	419	422 ^b	10	444	443	13	473	473 ^d	5	417	420^{b}	
2	427	424	15	510	503 ^d	8	426	427	13	490	489 ^d		D	_	16a	447	457	
3	427	423	611 1		15	501.5	500 ^d	16a	468	477	Benzene		e	16b	457	457		
4	451	451	, c	nioroioi	ш	18	448	449	16b	477	477	4	434	434	17a	447	457	
5	451	449	4	431	433	19	447	449	17a	468	477	5	434	430	17b	457	457	
6	451	449	5	431	430				17b	477	477	8	442	440	~			
7	453	451	6	431	430		Alcoho	1				9 442 439			Pet	Petroleum ether		
8	458.5	459	8	438	438	3	398.5	403	L	ight ligr	oin	10	442	439	4	420	422	
9	458.5	459	9	438	438	5	421	421	5	421	422 ^b	13	487	486 ^d	õ	420	421	
10	458.5	459	10	438	437	6	421	421	16a	452	460	16 a	464	472	6	420	421	
12	504	504	12	483.5	485	9	428.5	43 0	16b	460	460	16b	474	472	10	427	426	
13	504	502 ^d	13	483.5	488^d	10	428.5	427	17a	452	459	17a	464	472	12	471	475	
15	538	539 ^d	15	515	516 ^d	11	362	370^{c}	17b	460	459	17b	474	472	13	471	472 ^d	
169	483	494	16a	462	474	13	473	472 ^d	18	451	452	21	461	460				
165	491	494	16b	471	474	14	352	352	19	451	451.5							
17a	483	492	17a	462	472	18	450	450	21	448	448							
175	404	492	17b	471	474	20	350	347										
18	481	479	18	460.5	460													
10	481	479	21	457	459													
21	478	478																

^a Experimental data: P. Karrer and E. Jucker, "Carotenoids," Elsevier Publishing Co., Inc., Houston, Texas, 1950, unless otherwise indicated. ^b R. Kuhn and H. Brockmann, Z. physiol. Chem., 213, 192 (1932). ^c P. Karrer and C. H. Eugster, Helv. Chim. Acta, 34, 1805 (1951). ^d P. Karrer and E. Leumann, *ibid.*, 34, 445 (1951). ^e B. C. L. Weedon and R. J. Woods, J. Chem. Soc., 2687 (1951).

not be discussed at present, as there are no other data.

 N_{r5} was computed from the observed values for λ_{max} of compounds 18 and 19 (Table II); the value $(N_{r_5} = -0.9)$ is very close to that of N_{r_1} as expected. However, in the case of compounds 16 and 17, better agreement was obtained with $N_{\rm r5}$ = -0.3; therefore the structural formula of either dihydrorhodoxanthin (Table II, 18) or aphanin (Table II, 16), probably the latter, is doubtful.

tenoids, the α,β -epoxyalkyl group exerts a rather large bathochromic effect, but the effect of the furanoid oxide group (FO), computed from the observed values for λ_{max} of compounds 1–10 (Table II), is almost zero $(N_{\rm FO} = +0.02)$.

The ring of dihydro-bis-anhydro- β -carotene (r6, Table I) exerts a hypsochromic effect (N_{r6} = -0.4) quite unexpectedly in view of its exocyclic ethylene structure.

In the case of the oxide substituents of caro-

Osaka, Japan

[CONTRIBUTION FROM INSTITUTE OF POLYTECHNICS, OSAKA CITY UNIVERSITY]

Absorption Spectra and Chemical Structure. IV. Unsaturated Aldehydes, Ketones and Carboxylic Acids

By Kenzô Hirayama

RECEIVED JULY 16, 1953

The wave length of the first absorption maximum of a conjugated system, with either a carbonyl or carboxyl group at the α -position or at both the α - and ω -positions, also can be expressed by the functional relationship $(\lambda_{max})^2 = A - BC$

The following equations, which are applicable to polyene derivatives, were discussed in the appendix to Part I.

For polyenes with no
chromophoric
substituents
$$\begin{cases}
(\lambda_{max})^2 = a + B(1 - C^N) & (1) \\
= A - BC^N & (2)
\end{cases}$$

For polyenes with the same

substituents in
$$\alpha$$
-
 $a'' + b_{het} + BC_{het}^2(1 - C^N)$

()

(3)(4) and ω -positions

Similarly for conjugated systems with only one heterochromophore which is in the α -position, the following equations may be applied

$$(\lambda_{\max})^2 = a' + \frac{b_{het}}{2} + BC'_{het}^2(1 - C^N)$$
(5)
= $A' - B'C^N$ (6)

where a' is the intercept value when N = 0, and

B and C have the meanings given in previous cases; the value for C used in 2 and 4 should be satisfactory for 6.

For conjugated polyene α -aldehydes, A' and B'were computed from the observed values for λ_{\max} in petroleum ether¹ with C = 0.920 and substituted in 6 to give

$$(\lambda_{\max}^{p.e.})^2 = (39.78 - 39.33 \times 0.920^N) \times 10^4 \text{ m}\mu^2$$
 (7)

The values calculated by 7 (Table I, 1-9) show good agreement with the observed values.

Ketones, which can be considered as derivatives of aldehydes in which the hydrogen of the -CHO

(1) As shown in part II, the λ_{max} of polyenes in hexane, petroleum ether and light ligroin vary only slightly with the solvent; therefore in this part, the same value for B' is used for the calculation of the λ_{max} in these three solvents. Consequently, in many cases the observed values in light ligroin and in hexane are a little longer and a little shorter, respectively, than the corresponding calculated values.